FINAL REPORT Modeling and Simulation of a Distributed Generation-Integrated Intelligent Microgrid SERDP Project SI-1650

نویسندگان

  • Saifur Rahman
  • Manisa Pipattanasomporn
چکیده

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. At present, there is a need to design a distributed and autonomous subset of a larger grid or a microgrid to increase the security and reliability of electricity supply. The objective of this work was to model and simulate a specialized microgrid called an Intelligent Distributed Autonomous Power Systems (IDAPS), which play a crucial role in building a scalable power grid that facilitates the use of renewable energy technologies. Microgrid device models, including distributed energy sources and loads, as well as their control algorithms, were developed. Several case studies were simulated to evaluate the operation of the IDAPS microgrid during parallel and islanded operation modes. Simulation results indicated that the proposed IDAPS control model was able to: (i) perform demand management during normal operating condition; (ii) island the microgrid from the main grid once an upstream fault is detected; (iii) secure critical loads and shed non-critical loads according to the given priority list during emergencies; and (iv) resynchronize the microgrid to the main grid after an upstream fault is cleared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Allocation of Distributed Generation in Microgrid by Considering Load Modeling

Recent increment in carbon emission due to the dependency on fossil fuels in power generation sector is a critical issue in the last decade. The motivation to Distributed Generation (DG) in order to catch low carbon networks is rising. This research seeks to experience DG existence in local energy servicing in microgrid structure. Optimal sizing and placement of DG units is followed by this pap...

متن کامل

Robust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems

This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV), fuel cell (FC) and battery energy storage (BES) in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly descr...

متن کامل

Optimal Operation of Microgrid in the presence of Real-time Pricing Demand Response Program using Artificial Bee Colony Algorithm with a Modified Choice Function

Abstract: Microgrid is one of the newest technologies in power systems. Microgrid can usually has a set of distributed energy resources that makes it able to operate separate from power grid. Optimal operation of microgrids means the optimal dispatch of power resources through day and night hours. This thesis proposed a new method for optimal operation of microgrid. In this method, real-time pr...

متن کامل

Frequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm

Due to the increasing penetration of renewable energies in the power system, the frequency control problem has attracted more attention, while the traditional control methods are not capable of regulating the frequency and securing the stability of the system. In smart grids, demand response as the frequency control tool reduces the dependence on spinning reserve and high cost controllers. In a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010